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Abstract

We study the occurrence of torsional instabilities in soft, incompressible, thick-walled tubes with
both circumferential and axial pre-stretches. Assuming a neo-Hookean strain energy function, we
investigate the helical buckling under a finite torsion in three different classes of boundary conditions:
a) no applied loads at the internal and external surfaces of the cylindrical tube, b) a pressure load
P acting on the external surface or c) on the internal surface. We perform a linear stability analysis
on the axisymmetric solutions using the method of small deformations superposed on finite strains.
Applying a helical perturbation, we derive the Stroh formulation of the incremental boundary value
problems and we solve it using a numerical procedure based on the surface impedance method. The
threshold values of the torsion rate and the associated critical circumferential and longitudinal modes
at the onset of the instability are examined in terms of the circumferential and axial pre-stretches,
and of the initial geometry of the soft tube.

Keywords: Finite torsion, elastic stability, residual stresses, Stroh formulation, surface impedance
method.

1 Introduction

A great impulse in the development of the modern theory of finite elasticity was given by the discovery
of the existence of few universal solutions, i.e. which hold regardless of the specific form of the strain
energy function. The finite torsion of a circular cylinder belongs to a special family of such universal solu-
tions, as first reported by Rivlin for isotropic, incompressible, hyperelastic materials [1]. The application
of a simple torsion to a cylindrical tube, in fact, defines an inhomogeneous deformation which is said to be
controllable, meaning that it can be produced by surface tractions alone in the absence of external body
forces [2]. The determination of all controllable deformations for isotropic, incompressible, hyperelastic
bodies was first presented by Ericksen [3], and later extended to the wider class of simple materials [4–6].
Five families of inhomogeneous deformations have been identified, including the combined extension and
torsion of a hollow cylinder [7]. For this case, further universal relations between the stress components
have been reported by Ogden et al. [8] for a specific class of constitutive laws for rubber-like materials.

Although a bifurcation in the elastic stability occurs over a certain torsion rate for both solid and
hollow cylinders, the observed instabilities in the two cases are very different. In fact, a twisted cylindrical
rod immediately generates a kink, which suddenly forms a sharply bent ring [9], whilst a cylindrical tube
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twisted beyond a critical torsion rate undergoes a helical buckling [10]. Very few studies have been
performed to study such torsional instabilities in nonlinear elasticity. For solid cylinders, the basic
homogeneous deformation allowed Green and Spencer [11] to provide analytical solutions for the torsion
instability of a neo-Hookean material. Such a linear stability analysis was later extended to Mooney-
Rivlin cylinders subjected to combined axial extension and finite torsion by the means of a numerical
procedure [12]. For hollow cylinders, a linear elastic solution exists for cylindrical shells under a torsion
load [13], whilst only Ertepinar and Wang [14] used nonlinear elasticity in order to find numerical results
for thick-walled cylinders to be compared to a set of experimental tests. However, their model did
not consider a basic elastic solution with radially inhomogeneous deformation, which in turn necessarily
results from the absence of external traction loads at the side surfaces of the tube.

The aim of this work is to investigate the elastic stability of pre-stressed, hollow cylinders subjected to
a finite torsion rate. We consider a hyperelastic, isotropic, neo-Hookean material and we take into account
the presence of both axial and circumferential homogeneous pre-stretches as well as the incompressibility
constraint, which are required to study the mechanical behavior of tubular living tissues [15,16]. The work
is organized as follows. In Section 2, we describe the geometry and the kinematics of the elastic problem.
In Section 3, we calculate the basic axisymmetric solutions considering three different sets of boundary
conditions. When the faces of the tube are not subjected to an external pressure, we compute the fields
for a radially inhomogeneous axisymmetric solution including extension and torsion. When one face is
subjected to an external hydrostatic pressure, we specialize the analysis by considering a homogeneous
pre-strain arising in response to pressure, followed by a finite torsion. The incremental elastic theory for
the torsional instability is described in Section 4, and the results are presented in Section 5 and discussed
in Section 6.

2 Geometry and kinematics of the elastic problem

Let E ⊂ R3 be the three-dimensional Euclidean space, so that Bm,Ba ⊂ E are two regions occupied
by a hollow circular cylinder in two different instants of time. In particular, we apply a finite torsion
rate γ to the tube, which moves from the residually-stressed material configuration Bm to the spatial
configuration Ba. In order to take into account the presence of both circumferential and axial pre-stretch,
we define the reference state B0 of the tube as a cylindrical sector with:

Ri ≤ R ≤ R0, 0 ≤ Θ ≤ 2π − β, 0 ≤ Z ≤ L (1)

where Ri and R0 are the inner and outer radii, respectively, L is the axial length and β < 2π is the
initial opening angle, as depicted in Figure 1. We remark that if β is positive one obtains an open
cylindrical sector, whilst if it is negative there is an overlapping region in the reference state. Setting the
orthonormal bases (ER,EΘ,EZ) in B0 and (er, eθ, ez) in Ba, we can define a mapping χ as the following
C1-diffeomorphism:

χ : B0 → Ba x = χ(X), with inverse X = χ−1(x) (2)

from the reference position X in B0, into its spatial counterpart x in Ba.
The mapping in equation (2) can be split into two components as χ = χγ ◦ χλ, where χλ is the

component which restores the geometrical compatibility of the tube, therefore being associated with the
definition of the circumferential and axial pre-stretches, and χγ takes into account the application of a
finite torsion rate, as shown in Figure 1.

Considering the cylindrical coordinate systems (r, θ, z) and (R,Θ, Z) in Ba and B0, respectively, let
us define the mapping χ using the following deformation fields: r(R,Θ, Z) = r(R)

θ(R,Θ, Z) = λθΘ + λzγZ
z(R,Θ, Z) = λzZ

(3)
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Figure 1: Schematic representation of the mapping χ: the component χλ restores the geometrical com-
patibility mapping into the residually-stressed hollow cylinder in Bm; while the component χγ takes into
account the finite torsion rate γ.

where r(R) is a scalar function of R, λθ = 2π/(2π−β) is the circumferential pre-stretch, depending on the
initial angle β, and γ is the finite torsion rate. Accordingly, the deformation gradient F = Gradχ(X) =
∂χ(X)

∂X
associated to equation (3) is radially inhomogeneous and reads:

F =


∂r(R)
∂R 0 0

0
r

R
λθ λzγr

0 0 λz

 (4)

in the El ⊗ ek basis, (l, k) spanning over {R,Θ, Z} and {r, θ, z}, respectively. Furthermore, the local
incompressibility constraint is given by:

det F = 1 (5)

which, in its global form, allows to completely define the kinematics of the elastic problem, imposing:

r(R) =

√
R2

λzλθ
+ a, with a = r2

i − R2
i /(λzλθ). (6)

Using equation (4), the left Cauchy-Green tensor B = FFT reads:

B =


(

R

rλzλθ

)2

0 0

0
( r
R
λθ

)2

+ (λzγr)
2 λ2

zγr

0 λ2
zγr λ2

z

 (7)
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in the eh ⊗ ek basis, (h, k) spanning over {r, θ, z}. As highlighted by Ogden [17], the Eulerian principal
axes associated to the deformation in equation (3) have the following unit vectors:

e1 = er, e2 = eθ cosφ− ez sinφ, e3 = eθ sinφ+ ez cosφ, (8)

where φ identifies the rotation angle of the principal vectors e2 and e3 with respect to eθ and ez. The
corresponding principal stretches λ1, λ2 and λ3 can be calculated by diagonalizing B as follows:

QTBQ = V2 = diag(λ2
1, λ

2
2, λ

2
3) (9)

where Q is the rotation matrix, associated to the change of basis in equation (8), diag indicates the
diagonal matrix operator and V is the unique, positive-definite spatial stretch tensor arising from the
polar decomposition of the deformation gradient. It follows that the principal stretch associated to the

principal axes e1 is λ1 =
R

rλzλθ
, while the two other principal stretches are related by:


λ2

2 + λ2
3 = λ2

θ

r2

R2
+ λ2

zγ
2r2 + λ2

z

λ2λ3 =
λzλθr

R

(10)

with:

tan(2φ) =
2λ2

zγr

λ2
2 + λ2

3 − 2λ2
z

, (11)

which is valid within the range 0 6 φ < π/4. In the next section, we introduce the constitutive assumption
for the cylindrical tube and we derive the basic axisymmetric solutions for the torsion problem using three
different sets of boundary conditions.

3 Constitutive assumption and basic axisymmetric solutions

Let us consider an isotropic, hyperelastic, incompressible material assuming a neo-Hookean strain
energy function ψ:

ψ =
µ

2
(tr B− 3)− p(det F− 1), (12)

where µ is the shear modulus, p is the Lagrange multiplier arising when enforcing the incompressibility
constraint, and tr is the trace operator. From equation (12), the constitutive relation for the nominal
stress S and the Cauchy stress σ = SF can be written as:

S = µFT − pF−1; σ = µB− pI. (13)

Using equations (7, 13), the non-null components of the Cauchy stress tensor read:

σrr(r) = µBrr − p = µ
(r2 − a)

r2λθλz
− p

σθθ(r) = µBθθ − p = µ

(
r2λθ

λz(r2 − a)
+ λzγr

)
− p

σθz(r) = σzθ(r) = µBθz = µλ2
zγr

σzz(r) = µBzz − p = µλ2
z − p.

(14)
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It is useful to recall that, as first reported by Rivlin [1], the finite torsion of the pre-stretched cylinder
can be obtained by applying surface tractions alone at the end surfaces, being:

N = 2π

∫ r0

ri

σzzrdr; M = 2π

∫ r0

ri

σzθr
2dr (15)

where N is a normal force and M is a torque, whose values depend on the applied boundary conditions.
Moreover, the equilibrium equations in the spatial configuration are given by:

divσ = 0 in Ba (16)

where div is the spatial divergence operator. Substituting equation (14) into equation (16) , the equilib-
rium equations for an axisymmetric solution reduce to:

dσrr(r)

dr
+

1

r
(σrr(r)− σθθ(r)) = 0. (17)

Considering the application of traction loads at the inner and outer surfaces, the most general expression
of the boundary conditions reads:{

σ · n = C1n on ∂B1
a = {r : r = ri}

σ · n = C2n on ∂B2
a = {r : r = r0}

(18)

where n is the spatial outer normal unit vector on the surface and C1, C2 are two scalar values describ-
ing the presence of traction loads. As depicted in Figure 2, three sets of boundary conditions will be
investigated in the following:

(a) no traction loads on the internal and external surfaces;

(b) a pressure of magnitude P acting on the external surface ∂B1
a;

(c) a pressure of magnitude P acting on the internal surface ∂B2
a.

whose corresponding values of the constants C1, C2 are collected in Table 1.

b) c)

a)

ri

r0

P

No Loads

ri

r0

P
ri

r0

a)

External pressure Internal pressure

Figure 2: Three different boundary conditions are considered: the hollow cylinder (a) is stress-free at
both surfaces, a pressure P is applied (b) at the external surface or (c) at the internal surface.

As discussed by Hoger [18], the distribution of residual stresses inside the material will depend not
only on the shape of the body but also on the boundary conditions, which fix the Lagrange multiplier
p. Therefore, we calculate the basic solution of the elastic problem expressed by in equations (16,18) for
each of the three cases under consideration.
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on r = ri on r = r0

(a) No loads C1 = 0 C2 = 0
(b) External pressure C1 = 0 C2 = −P
(c) Internal pressure C1 = −P C2 = 0

Table 1: Scalar values C1, C2 in equation (18), defining the boundary conditions of equation (16), for the
three loading scenarios shown in Figure 2.

3.1 Case (a): stress-free internal and external surfaces

First, let us derive the basic axisymmetric solution of the equilibrium equation in equation (16), when
no traction loads are applied on both the external and the internal surfaces of the cylindrical tube. In
this case, the boundary conditions in equations (18) reduce to:{

σrr(ri) = 0
σrr(r0) = 0

(19)

Substituting equations (14) into equation (17), we get:∫ r0

ri

Brr(r)−Bθθ(r)
r

dr = 0, (20)

where the boundary conditions in equation (19) has been used. Recall that the relation between the
deformed external and internal radii is given by the global incompressibility constraint in equation (6),
reading here as:

r0 =

√
R2

0 −R2
i

λzλθ
+ r2

i . (21)

By substituting r0 from equation (21) into equation (20) we get:

1

H2λ2
θ

(
1

r2
i λz
− γ2(H2 − 1)λθλ

2
z −

H4λθ
H2 +H2r2

i λθλz − 1

)
− 2λθ log[H] +

1

λθ
log

[
1 +

H2 − 1

H2r2
i λθλz

]
= 0,

(22)
where H = R0/Ri is the initial aspect ratio. equation (22) defines an implicit relation to derive the
deformed internal radius ri, and, consequently, r0 from equation (21), given the initial geometry of the
hollow tube, the axial and circumferential pre-stretches and the finite torsion rate. The variation of ri and
r0 with the initial aspect ratio is depicted in Figure 3 (left), showing the curves obtained by numerically
solving, for a given choice of β, λz and γ, equations (21, 22) using the Newton method. Finally, the
Lagrange multiplier p can be easily calculated from equation (17), using equation (21), and reads:

p = µBrr(r) + µ

∫ r0

r

Brr(s)−Bθθ(s)
s

ds, (23)

which allows to calculate the distribution of the Cauchy stress components inside the tube. In Figure 3
(right) the distribution of the radial and circumferential components of the Cauchy stress are depicted
as functions of the radius. The residual circumferential stress is compressive at the internal radius and
tensile at the external radius, while the radial component is always compressive across the layer and it
vanishes at the internal and external surfaces for the boundary conditions.

3.2 Case (b): Pressure load P at the external surface

Let us now solve the equilibrium equations in equation (16), when a pressure of load P acts on the
external surface of the cylindrical tube. In detail, we focus on the particular case in which the residual
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Figure 3: External and internal radii, r0 (thick) and ri (dashed), respectively, plotted against the initial
aspect ratio H = R0/Ri (left); and Cauchy stress components σrr (thick) and σθθ (dashed) within a tube
with initial aspect ratio H = 1.2 (right). The curves are obtained setting β = π/6, λz = 1, and γ = 0.15,
for traction-free internal and external surfaces.

strains arise in response to the applied pressure in order to provide an optimal material behavior. Such
a stress-adaptation is typical of biological tissues, as investigated by Destrade et al. [19] based on a
previous study on arteries [20], where the physiological amount of circumferential pre-stretch is naturally
calibrated in order to induce a homogeneous deformation inside the tissue under the action of the blood
pressure. Using the same idea, in the absence of a torsion rate we assume that the tube undergoes the
following homogeneous deformation when a pressure P is applied on the external surface of the cylinder:

rh(R,Θ, Z) =
R√
λzλθ

; θh(R,Θ, Z) = λθΘ; zh(R,Θ, Z) = λzZ. (24)

giving rise to the homogeneous deformation gradient:

Fh = diag

(
1√
λzλθ

,

√
λθ
λz
, λz

)
(25)

Accordingly, the boundary conditions allow to derive an analytical relationship between the external
pressure P and the pre-strains inside the tube:

P = µ

∫ r0

ri

Fhrr
2
(r)− Fhθθ

2
(r)

r
dr = − (−1 + λ2

θ)µ ln[H]

λθλz
, (26)

If we consider an applied pressure P given by equation (26) at the external surface, the boundary
conditions in equation (18) read as: σrr(ri) = 0

σrr(r0) = −P =
(−1 + λ2

θ)µ ln[H]

λθλz
.

(27)

Accordingly, the Lagrange multiplier p can be calculated from equation (17), using the inhomogeneous
deformation fields in equation (3), as follows:

p = µBrr(r)− µ
∫ r0

r

Brr(r)−Bθθ(r)
r

dr − (−1 + λ2
θ)µ ln[H]

λθλz
, (28)
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where r0 is given by equation (21). As in the previous case, the internal radius ri is implicitly calculated
from the boundary conditions in equation (27), using equations (14, 17). The variations of the radial and
circumferential components of the Cauchy stress with r are depicted in Figure 4 (left).

3.3 Case (c): Pressure load P at the internal surface

Finally, let us consider the case of a pressure load P applied on the internal surface of the cylindrical
tube only. Making the same assumptions used for the case (b), the internal pressure is related to the
pre-strains of the tube by the following relation:

P = −
∫ r0

ri

σrr(r)− σθθ(r)
r

dr =
(−1 + λ2

θ)µ ln[H]

λθλz
. (29)

In this case, the boundary conditions in equation (18) read: σrr(ri) = −P =
(1− λ2

θ)µ ln[H]

λθλz
σrr(r0) = 0.

(30)

Finally, the Lagrange multiplier p is obtained by solving the equilibrium problem in equation (17) with
boundary conditions in equation (30), being:

p = µBrr(r) + µ

∫ r

ri

Brr(r)−Bθθ(r)
r

dr +
(−1 + λ2

θ)µ ln[H]

λθλz
, (31)

where ri is calculated substituting equations (14,17) into the boundary conditions in equation (30). The
radial and circumferential components of the Cauchy stress for the case (c) are depicted in Figure 4
(right).
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Figure 4: Cauchy stress components σrr (thick) and σθθ (dashed) within a tube with initial aspect ratio
H = 1.2. The curves are obtained setting β = π/6, λz = 1, and γ = 0.15, when a pressure is applied at
the external (left) and internal (right) surface.

For the given pre-stretches, the resulting circumferential stresses have the same sign for both cases,
but the maximum stress is higher for the case (b), suggesting an earlier onset of the instability. Moreover,
the radial stress is tensile across the layer in the case (b), whilst it is compressive in the case (c).

In the following section, we perform a linear stability analysis of the axisymmetric elastic solutions to
study the onset of torsional instabilities for the hollow cylinder.
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4 Linear stability analysis

Here the stability of the hollow cylinder subjected to finite torsion is investigated using the method
of incremental deformations superposed on finite strains [17]. First, we define a perturbation of the
basic axisymmetric solutions and, second, we solve the associated incremental problem for calculating
the critical values for the torsion rate at the onset of the torsional instability.

4.1 Definition of the incremental deformation

Let us define an infinitesimal perturbation δx of the basic solution x as follows:

x̄ = x + δx = χ(X) + χ(1)(x), (32)

where x̄ is the perturbed position vector, and χ(1) : Ba → B′a is the incremental mapping that takes
the spatial position vector x into the perturbed configuration B′a ⊂ E . If the displacement vector δx
satisfies the condition |δx|2 � |δx|,∀x ∈ Ba, then we can refer to χ(1) as an incremental deformation.
The incremental displacement vector δx, can be expressed as:

δx = χ(1)(r, θ, z) = u(r, θ, z)er + v(r, θ, z)eθ + w(r, θ, z)ez (33)

where u, v, w are three incremental displacement fields. Accordingly, the spatial displacement gradient

associated to the incremental deformation, Γ = gradχ(1)(x) =
∂χ(1)(x)

∂x
, reads:

Γ =

 u,r (u,θ − v)/r u,z
v,r (v,θ + u)/r v,z
w,r (v,θ)/r w,z

 (34)

in the el ⊗ ek basis, (l, k) spanning over {r, θ, z}. where the comma denotes the partial differentiation
with respect to the argument.

In the following, we will use barred variables in order to identify the perturbed quantities. From
equation (32), the perturbed deformation gradient F̄ reads:

F̄ = F + δF = F + ΓF, (35)

where δF is the increment of the basic deformation gradient F. The perturbed nominal stress is given
by:

S̄ = S + Ṡ (36)

where S is the basic nominal stress in equation (13) and Ṡ is its increment, which can calculated by
simple differentiation rules.

In particular, its push-forward of Ṡ0 in the perturbed configuration reads:

Ṡ0 = FṠ = A1
0Γ + pΓ− qI (37)

where q is the increment of the Lagrange multiplier p, and A1
0 is the so called tensor of instantaneous

moduli, which is given by:

A1
0hklj = FhιFlβ

∂2ψ

∂Fkι∂Fjβ
= µδkjBhl, (38)

where δkj is the Kronecker delta and equation (12) has been used. The incremental equilibrium equations
in the spatial form can be written as:

div Ṡ0 = 0 in B′1a
Ṡ
T

0 · n = δC1n− C1Γ
Tn on ∂B′1a

Ṡ
T

0 · n = δC2n− C2Γ
Tn on ∂B′2a

(39)
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where Ṡ0 is given by equation (37) and δC1, δC2 are the increments of the boundary values C1, C2,
respectively. Furthermore, the incremental incompressibility constraint reads:

tr Γ = 0. (40)

In summary, the bulk equations of the incremental boundary value problem are given by a system of
four partial differential equations (PDEs), i.e. the three incremental equilibrium equations in equation
(39):

∂(rṠ0rr)

∂r
+
∂Ṡ0θr

∂θ
+ r

∂Ṡ0zr

∂z
− Ṡ0θθ = 0

∂(rṠ0rθ)

∂r
+
∂Ṡ0θθ

∂θ
+ r

∂Ṡ0zθ

∂z
+ Ṡ0θr = 0

∂(rṠ0rz)

∂r
+
∂Ṡ0θz

∂θ
+ r

∂Ṡ0zz

∂z
= 0

(41)

and the incremental incompressibility condition in equation (40):

u,r +
u+ v,θ
r

+ w,z = 0. (42)

In the next section, we rewrite the incremental elastic problem in equations (39,40) into the more conve-
nient Stroh formulation.

4.2 Stroh formulation

The Stroh formulation allows to transform the system of four PDEs in equations (41,42) with boundary
conditions in equation (39) into a system of six ordinary differential equations (ODEs) with given initial
conditions [21].

Assuming variable separation, we consider the following expression of the incremental displacements:

{u, q} = {U(r), Q(r)} cos(kzz −mθ)
{v, w} = {V (r),W (r)} sin(kzz −mθ)

(43)

where m is the circumferential mode and kz = 2nπ/L is the wavenumber of the tube in the longitudinal
direction, with m and n being integers, and U, V,W,Q are four scalar functions of r. Such a helical
perturbation deforms the hollow cylinder as illustrated in Figure 5.

From equation (37) and equation (43), the incremental stress components must have the following
form:

Ṡ0rr = S0rr(r) cos(kzz −mθ)
{Ṡ0rθ, Ṡ0rz} = {S0rθ(r), S0rz(r)} sin(kzz −mθ)

(44)

where S0rr, S0rθ, S0rz are three scalar functions of r. Substituting equations (43-44) into the incremental
constitutive equations in equation (37), we obtain:

Q = (A1
0rrrr + p)U ′ − S0rr (45)

V ′ =
S0rθ

A1
0rθrθ

+
1

r

(V −mU)

A1
rθrθ

p (46)

W ′ =
S0rz

A1
0rzrz

+
kzU

A1
0rzrz

p, (47)
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Figure 5: Helical buckling of a cylindrical tube obtained from the output of the numerical simulations
in the case (a) for H = 1.6, R0 = 1, L = 5, U(r0) = 0.15 λz = 1 and β = π/6, occurring at the critical
wavenumbers m = 2, kz = 1.37 (left). Plots of the resulting incremental displacement fields U(r), V (r)
and W (r) inside the tube, setting U(r0) = 1 (right). The amplitude of the linear perturbation is fixed
arbitrarily for illustrative purposes.

where the prime denotes differentiation. Moreover, the incremental incompressibility condition in equa-
tion (42), reads:

U ′ =
mV − U

r
− kzW. (48)

Substituting equations (37) and (43) into equations (41), and using equation (44) to replace the compo-
nents Ṡ0rr, Ṡ0rθ, Ṡ0rz of the incremental stresses, we get:

1

r2

{
−rS0rr −

[
A1

0θθθθ +A1
0θrθrm

2 + p+ kzr
(
−mA1

0θrzr −mA1
0zrθr +A1

0zrzrkzr
)]
U

+

[
m
(
A1

0θrθr +A1
0θθθθ + p

)
−
(
A1

0θθzθ +A1
0zrθr

)
kzr

]
V

+r

[(
rS0rr

)′
+
(
A1

0rrrr + p
)
U ′ −mpV ′

]
+ kzpr

2W ′

}
= 0,

(49)

1

r2

{
−m

(
rS0rr

)
−
[
m
(
A1

0θrθr +A1
0θθθθ + p

)
−
(
A1

0θrzr +A1
0zθθθ

)
kzr

]
U

+

[
A1

0θrθr +m2
(
A1

0θθθθ + p
)
−
(
A1

0θθzθ +A1
0zθθθ

)
kzmr +A1

0zθzθk
2
zr

2

]
V

−kzmprW − r
(
rS0rt

)′
+A1

0rrrrmrU
′ +mprU ′ − prV ′

}
= 0,

(50)
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1

r2

{
kzr
(
rS0rr

)
− kzmprV +

[
A1

0θzθzm
2 + k2

z

(
A1

0zzzz + p
)
r2 −

(
A1

0θzzz +A1
0zzθz

)
mkzr

]
W

−r
(
rS0rz

)′
− kz

(
A1

0rrrr + p
)
r2U ′

}
= 0.

(51)

Now, let us define the displacement-traction vector η, as follows:

η(r) =

[
U(r)
rS(r)

]
; with

{
U(r) = [U(r), V (r),W (r)]T

S(r) = [S0rr(r), S0rθ(r), S0rz(r)]
T (52)

Accordingly, equations (46-51) can be compactly rewritten as:

dη(r)

dr
=

1

r
G(r)η(r), (53)

where G is the so-called Stroh matrix, having the following block form:

G =

(
G1 G2

G3 G4

)
. (54)

In particular, the four blocks of G read:

G1 =

 −1 m −kzr
−mσ1 σ1 0
kzrσ2 0 0

 , G2 =

 0 0 0
0 1/α1 0
0 0 1/α2

 , (55)

G3 =

 κ11 κ12 κ13

κ12 κ22 −κ23

κ13 −κ23 κ33

 , G4 = −GT
1 , (56)

where:

κ11 = m2(ν1 − α1σ
2
1) + k2

zr
2(ν2 − α2σ

2
2) + (A1

0rrrr +A1
0θθθθ) + 2α1σ1 − kzrm(A1

0θrzr +A1
0zrθr),

κ12 = m
{
−A1

0rrrr −A1
0θθθθ − ν1 + α1

[
(σ1 − 1)2 − 1

]}
+ kzr(A1

0θθzθ +A1
0zrθr),

κ13 = kzr(A1
0rrrr + α1σ1),

κ22 = m2
[
(A1

0rrrr +A1
0θθθθ) + 2α1σ1

]
− kzrm(A1

0θθzθ +A1
0zθθθ) + k2

zr
2ν3 + ν1 − σ2

1α1,

κ23 = mkzr(A1
0rrrr + 2α1σ1),

κ33 = m2α3 + k2
zr

2(A1
0rrrr +A1

0zzzz + 2α3σ3)− kzrm(A1
0θzzz +A1

0zzθz),
(57)

and:
ν1 = A1

0θrθr, α1 = A1
0rθrθ, σ1 = p/α1,

ν2 = A1
0zrzr, α2 = A1

0rzrz, σ2 = p/α2,
ν3 = A1

0zθzθ, α3 = A1
0θzθz, σ3 = p/α3

(58)

In the next paragraph, we introduce the surface impedance method to build a numerical procedure
for solving equation (53) with the three sets of boundary conditions in Table 1.

4.3 The surface impedance method

The surface impedance method is usually employed to study propagation of surface waves in inho-
mogeneous media [22, 23] and was recently adapted to cylindrically geometries [24]. Let ηl(r), with
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l = {1, . . . , 6} be a set of independent solutions of the system in equation (53), and let N be the integral
matrix, defined as:

N (r) = [η1, . . . ,η6] . (59)

Let us define the 6x6 matricant solution M(r, rk), (k = i, o) as the block matrix:

M(r, rk) =

(
M1(r, rk) M2(r, rk)
M3(r, rk) M4(r, rk)

)
= N (r)N−1(rk), (60)

which, from equation (53), is the solution of the initial value problem:

dM

dr
(r, rk) = G(r)M(r, rk), with M(rk, rk) = I(6), (61)

where I(6) is the 6x6 identity matrix. The conditional impedance matrix z = z(r, rk) can be defined as
the 3x3 matrix, such that

rS = zU, (62)

where the term ”conditional” refers to the dependence on the boundary condition at r = rk. In fact, if a
zero traction condition is assumed at r = rk, then z has the following form:

z = M3M
−1
1 . (63)

Hence, substituting equation (52) and equation (62) in equation (53), we get:

d

dr
U =

1

r
G1U +

1

r
G2zU, (64)

d

dr
(zU) =

1

r
G3U−

1

r
GT

1 zU. (65)

Moreover, substituting equation (64) in equation (65) we derive the following differential matrix Riccati
equation:

d

dr
z =

1

r

(
G3 −GT

1 z− zG1 − zG2z
)
. (66)

Using equation (62), the boundary conditions in equation (39) can be transformed in the initial and the
stop conditions of the differential matrix Riccati equation in equation (66), as listed in Table 2.

initial conditions stop conditions

a) No loads z(ri) = 0 det z(r0) = 0

b) External pressure z(ri) = 0 det

z(r0)− P

 G11 G12 G13

0 0 0
0 0 0

 = 0

c) Internal pressure z(r0) = 0 det

z(ri)− P

 G11 G12 G13

0 0 0
0 0 0

 = 0

Table 2: Initial and stop conditions used to integrate numerically equation (66) in order to get the
bifurcation parameters of the torsional instability.

In practice, we implement the following numerical procedure for solving the incremental problem
based on the conditional impedance matrix. Fixing the initial aspect ratio H of the tube, and making
outer iterations on the wavenumbers m and kz, we integrate numerically equation (66) using the initial
conditions in the first column in Table 2 and we iterate on the torsion rate γ until the stop condition in
the second column of Table 2 is satisfied. In the next section, we present the resulting numerical results
and we discuss the role of the axial and circumferential pre-stretches on the onset of helical buckling.
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5 Numerical results

The numerical results of the linear stability analysis are presented in the following for each of the
three different load scenarios under consideration. In order to elucidate the analysis of the numerical
results, we present an illustrating example to show how we calculate the critical value of torsion rate and
the associated circumferential and longitudinal modes at the onset of the torsional instability.
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Figure 6: Critical torsion rates γ in function of the longitudinal mode kz, plotted for different circum-
ferential modes m = 1, 2, 3, 4, 5, obtained considering a) a stress-free cylindrical tube, b) a tube with an
applied external or c) internal pressure. In each case, we set H = 1.05, R0 = 1, µ = 1 and in case b)
and c), we calculate the pressure from equation (26) and equation (29) respectively, using β = π/4 and
λz = 1. The absolute minimum among all the curves identifies the critical values for mcr, kcrz and γcr.

In Figure 6, the bifurcation parameter γ is plotted against the longitudinal mode kz and for different
circumferential numbersm, for cylindrical tubes without external loads (Figure 6a), with external pressure
P given by equation (26) (Figure 6b) and with internal pressure P given by equation (29) (Figure 6c),
setting H = 1.05, R0 = 1, µ = 1, β = π/4, and λz = 1.

For each example, the critical value γcr corresponds to the absolute minimum among all the curves,
whilst the corresponding mcr and kcrz define the critical circumferential and longitudinal modes, respec-
tively. For each class of boundary value problems, we find that both the critical circumferential and
longitudinal modes depend on the initial aspect ratio.

Although the pressure is the control parameter in the cases (b) and (c), we use the functional relation-
ships in equations (26, 29) to consider the pre-stretches as the order parameters of the helical buckling. In
fact, the strategy of fixing P , and then calculating from equations (26, 29) one pre-stretch λθ or λz at any
given H whilst keeping the other fixed, would give a pre-strain varying with H, and a direct comparison
with the results of the case (a) would be difficult. Furthermore, in many biological tissues the in-vivo
pressure is not always known, while the geometrical data and the pre-strains are measurable from ex-
vivo cutting experiments. Accordingly, we investigate in the following paragraphs the role played by the
circumferential and axial pre-stretches λθ and λz, respectively, on the onset of the torsional instability.

5.1 Effect of the circumferential pre-stretch

Here, the role played by the circumferential pre-stretch λθ, on the onset of the torsional instability
is investigated. We recall that the circumferential pre-stretch depends on the initial angle β < 2π, as
λθ = 2π/(2π − β). In Figure 7, the values of critical torsion rates γcr are plotted against the initial aspect
ratio H, for different initial opening angles β and at fixed λz = 1.

The bifurcation parameters are shown in the case of traction-free cylindrical tubes (Figure 7a), tubes
with applied external pressure P given by equation (26) (Figure 7b) or applied internal pressure P given
by equation (29) (Figure 7c). The marginal stability curves show how, for a fixed H, an increase in the
initial opening angle corresponds to an increase of the critical torsion rate. In the case of traction-free
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Figure 7: Critical values of torsion rate γcr plotted against the initial aspect ratio H at λz = 1, in three
physical examples: traction-free (a) at β = −π,−π/2,−π/4, 0, π/4, π/3 applied external (b) and internal
(c) pressure. In cases b) and c), we calculate the external and internal pressure P from equation (26)
and equation (29), respectively, using β = 0, π/6, π/4, π/3, π/2.

cylindrical tubes, this effect becomes more relevant for thicker tubes, while the critical torsion γcr → 0
for H → 1. When a pressure is applied on the external or the internal surface of the cylindrical tube,
instead, the critical torsion rate for H → 1 approaches a finite value depending on β.

In Figure 8, the values of the critical longitudinal mode kcrz are plotted as functions of the initial
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Figure 8: Critical values of longitudinal mode kcrz plotted against the initial aspect ratio H at λz = 1, in
three physical examples: traction-free (a) at β = −π,−π/2,−π/4, 0, π/4, π/3, applied external (b) and
internal (c) pressure. In the cases b) and c) the pressure P is calculated from equation (26) and equation
(29), respectively, at β = 0, π/6, π/4, π/3, π/2. The solid black lines indicate the related value of mcr for
each branch of the curves.

aspect ratio H at different initial opening angles and at fixed λz = 1, for traction-free cylindrical tubes
(Figure 8a), tubes with applied external pressure (Figure 8b) or applied internal pressure (Figure 8c).
The critical circumferential modes are also depicted at different range of H, showing that when a traction
free boundary condition is considered, the circumferential mode is always mcr = 2. The same behavior is
observed in the case of applied external or internal pressure, when λθ = 1. Otherwise, when λθ 6= 1, tubes
with H ≥ 1.2 exhibit mcr = 2, while thinner tubes have higher critical circumferential wavenumbers.
On the other hand, for a fixed initial aspect ratio, the absolute value of the critical longitudinal mode
increases as the initial opening angle increases. Moreover, thin tubes (1 < H < 1.1) select higher
longitudinal critical wavenumbers than thick tubes.
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5.2 Effect of the axial pre-stretch

In this section, the role played by the pre-stretch λz on the onset of torsional instabilities is analyzed.
In Figure 9, the critical torsion rates γcr are plotted against the initial aspect ratio H, for different
pre-stretches λz at fixed β = π/6. The marginal stability curves are depicted for traction-free cylindrical
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Figure 9: Critical values of torsion rate γcr plotted against the initial aspect ratio H for three sets
of boundary conditions: traction-free tube (a), applied external (b) or internal (c) pressure for λz =
0.9, 0.95, 1, 1.1, 1.2, and β = π/6. In the cases b) and c), we calculate the external and internal pressure
P from equation (26) and equation (29), respectively, at the given values of λz.

tubes (Figure 9a), tubes with applied external pressure given by equation (26) (Figure 9b) and with
applied internal pressure given by equation (29) (Figure 9c). At fixed initial aspect ratio, the critical
values of torsion rates increase as λz increases, showing how a cylindrical tube under a finite compression
becomes unstable at lower torsion rates than one subjected to a finite extension. Furthermore, thin tubes
have always lower values of critical torsion rate than thick tubes.
In Figure 10, the critical longitudinal modes are depicted for traction-free cylindrical tubes (Figure 10a),
cylindrical tubes with applied external (Figure 10b) and internal (Figure 10c) pressure. The critical
circumferential modes are also displayed for the three cases. The marginal stability curves highlight that
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Figure 10: Critical values of longitudinal mode kcrz plotted against the initial aspect ratio H in three phys-
ical examples: traction-free (a), applied external (b) and internal (c) pressure at λz = 0.9, 0.95, 1, 1.1, 1.2,
and β = π/6. In the cases b) and c) the pressure P is calculated from equation (26) and equation (29),
respectively, at the given values of λz. The solid black lines indicate the related value of mcr for each
branch of the curves.

tubes under axial compression select higher longitudinal modes than tubes under axial extension, while
mcr = 2 for thick tubes. For λz < 1, the axial compression provokes a barreling instability, corresponding
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mcr = 0, in thin tubes without any torsion. Although out of the scope of this work, it should be
recalled that in this case other asymmetric modes can occur for the buckling of a compressed tube with
guided-guided end conditions [25].

6 Discussions

We have investigated the torsional instabilities which can emerge when a soft, residually-stressed
cylindrical tube is subjected to a finite torsion. The model accounts for an initial opening angle β,
which defines the circumferential pre-stretch λθ = 2π/(2π − β), and for a uniform axial pre-stretch λz, in
order to represent the three-dimensional distribution of residual strains that is observed in living tubular
tissues, such as arteries.

In Section 2, we have presented the geometry and the kinematics of the elastic model. Considering an
incompressible neo-Hookean material, in Section 3 we derived the basic axisymmetric solutions for the
three different sets of boundary conditions. As depicted in Figure 2, we considered: traction-free boundary
conditions at both internal and external surfaces (a), an applied pressure load P given by equation (26) at
the external surface (b) or an applied pressure load P given by equation (29) at the internal surface (c).
In Section 4, we performed a linear stability analysis using the method of small deformations superposed
on finite strains. The incremental elastic problem has been derived using the Stroh formulation. Even
if previous works [12, 14] also transformed the incremental equations in a system of ODEs, they did not
use the optimal, Hamiltonian form based on the Stroh formalism [26]. The incremental solution has been
calculated using a numerical procedure based on the surface impedance method, which allows to rewrite
the Stroh problem as a differential matrix Riccati equation with given initial conditions. The numerical
results have been presented in Section 5, reporting the marginal stability curves for the critical torsion
rate γcr. An illustration of the deformed tube at the onset of the torsional instability is depicted in
Figure 5. As illustrated in Figure 6, the helical buckling is characterized by critical circumferential and
longitudinal modes, mcr and kcr, respectively, depending both on the initial thickness of the tube and
on the existing-pre-stretches. This confirms that the torsional instability in soft tubes strongly differs
from the one for solid cylinders, which is characterized by a critical mode m = 1 [11], with the initial
formation of a kink nonlinearly evolving into a knot [9].

Moreover, we find that the critical torsion rate γcr increases with an increasing initial thickness of
the hollow cylinder in accordance with the experimental results of Wang and Ertepinar [14] on stress-free
rubber tubes. However, whilst Wang and Ertepinar analyzed such data by incorrectly using a simplified
model based on a homogeneous basic deformation, we show here that the inhomogeneous displacements
fields in equations (4, 6) must be considered in order to satisfy the stress-free boundary conditions for
an incompressible material. Furthermore, when a traction-free boundary condition is considered, the
circumferential mode is independent of the thickness of the tube and is always mcr = 2 for λz ≥ 1.

Another novel aspect of this study concerns the investigation of the effects of the circumferential and
axial pre-strains on the onset of the torsional instability. The marginal stability curves in Figures 7-10 have
shown that both the critical torsion rate and the axial wavenumber increase for increasing circumferential
and axial pre-stretches. In particular, such a result on the axial wavenumber is in accordance with the
results on torsional instabilities in solid cylinders [11,12].

Finally, in Figure 11 we compare the critical torsion rates and the critical circumferential and longi-
tudinal modes for the three sets of boundary conditions that we have considered. As expected, we find
that a tube without any loads is the most unstable configuration with respect to torsional instabilities,
while the most stable configuration is always the externally pressured tube. Future work will be focused
on investigating the role of pressure as an independent control parameter of the stability properties of
the tube, without assuming any functional dependence on the residual strains.
In conclusion, we have determined the occurrence of torsional instabilities in soft cylindrical tubes with
circumferential and axial pre-stretches, considering three different sets of boundary conditions. Using a
robust numerical procedure based on the matrix Riccati equations of the incremental problem, we have
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lines are obtained by calculating the external and internal pressures from equation (26) and equation
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calculated the order parameters of the elastic bifurcation, deriving the critical torsion rates and the asso-
ciated critical modes. This work demonstrates that the distribution of residual strains plays a key role on
the onset of torsional instabilities in soft hollow cylinders, which is of utmost importance when studying
the biomechanical behavior of soft tubular tissues.
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